Problem#
You have a matrix of size $n\times n$, where each cell has a color $a_{i,j}\le n$.
You like large squares, but you do not like a variety of colors. Specifically, given a dislike value $k \le n$, you need to calculate the maximum square with each cell as the top-left corner, such that the number of colors inside does not exceed $k$.
You need to output the side length $len$ of the maximum square for each cell.
Note that the square cannot exceed the boundaries.
For all data, it holds that $1\le n\le 500,1\le k \le n,1\le a_{i,j}\le n$.
Solution#
First, consider a brute force enumeration of $n^5$, which is clearly infeasible.
Consider optimization.
Noticing the small range of values, we enumerate each element and calculate g[i][j]
, which represents how this element A
expands to a length of len
at the point (i, j)
when it is just added to the square.
g[i][j] = min(g[i + 1][j] + 1, g[i][j + 1] + 1, g[i + 1][j + 1] + 1);
Then, let f[i][j][len]
represent how many new points are added when the point i, j
expands to a length of len
.
When calculating g[i][j]
, we can simply increment f[i][j][g[i][j]]++
.
Code#
#include<bits/stdc++.h>
using namespace std;
const int N = 510;
int a[N][N];
int read()
{
int f = 1, x = 0;
char ch = getchar();
while(ch < '0' || ch > '9')
{
if(ch == '-') f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9')
{
x = x * 10 + ch - '0';
ch = getchar();
}
return f * x;
}
int n, k;
int g[N][N];// The A-th number will appear in the square with top-left corner (i, j) and side length g[i][j]
int f[N][N][N];
int main()
{
freopen("square.in", "r", stdin);
freopen("square.out", "w", stdout);
n = read(), k = read();
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= n;j++)
{
a[i][j] = read();
}
}
for(int A = 1;A <= n;A++)
{
for(int i = n;i >= 1;i--)
{
for(int j = n;j >= 1;j--)
{
g[i][j] = 0x3f3f3f3f;
if(i + 1 <= n) g[i][j] = min(g[i][j], g[i + 1][j] + 1);
if(j + 1 <= n) g[i][j] = min(g[i][j], g[i][j + 1] + 1);
if(i + 1 <= n && j + 1 <= n) g[i][j] = min(g[i][j], g[i + 1][j + 1] + 1);
if(a[i][j] == A) g[i][j] = 1;
if(g[i][j] <= n) f[i][j][g[i][j]]++;
}
}
}
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= n;j++)
{
int len = 1, tot = f[i][j][1];// For i, j as the top-left corner, how many new colors appeared for the first time with side length len
while(i + len <= n && j + len <= n && f[i][j][len + 1] + tot <= k) len++, tot += f[i][j][len];
printf("%d ", len);
}
printf("\n");
}
return 0;
}